
Xquery Lite 1.0
A query language for XML based on Xquery 1.0

Introduction

Status: This document describes Xquery-Lite 1.0 new features matching
closer the Xquery 1.0 spec will be added to future versions of this language.
New versions will always be compatible with older versions. This language
may be extended but won't be changed.

Xquery Lite is a subset of the W3C's Xquery 1.0 language. Xquery is a
powerful language for querying XML documents. We simplified the Xquery
spec obtaining a sub-set that we called Xquery Lite that is easy to implement
and allows many very interesting features for XML-Querying.

Characteristics

Xquery is based on Xpath so Xquery Lite is also based on Xpath you can
think about Xquery Lite as a super-set of Xpath adding many features useful
for querying XML documents, the most important feature is that queries are
not only restricted to one XML document, you can "join" many documents
and output the result comparing elements in two different documents if you
want.

Xquery Lite 1.1 preview

In a future 1.1 version of the language we plan to add the following features:

• IF statements
• A sequence-equal function that compares subtrees regardless of the

order in which elements appear
• A "some" function allowing constructs in the form where

some($b/title) = "foo" thus comparing some element in a node set
agains another element or value.

• Sorting
• Min, Max and Average functions

An Xquery Lite 1.0 query

An Xquery Lite query is composed by decorating text and Xquery Lite
expressions, expressions must be enclosed between {brackets}, everything
outside brackets is directly outputted to the result

Example of a Query skeleton:

http://www.w3.org/TR/xquery/

<result>
{
 XQUERY_EXPRESSIONS
}
</result>

Note that the decorating text doesn't need to be XML it can be plain text or
whatever you want for the result of the query.

Xquery Lite expressions

Xquery Lite expressions are based on Xquery FLWR (For-Let-Where-Return)
expressions. A FLWR expression is in the form:

FOR_STATEMENT+
LET_STATEMENT*
WHERE_STATEMENT?
RETURN_STATEMENT

So we must have at least a FOR statement, followed by 0..n LET statements,
then an optional where statement and only one mandatory return statement.
As we can see later a return statement can include other queries thus
allowing the use of nested-queries or sub-queries. You don't need to
sepparate FOR-LET-WHERE-RETURN by line breaks but you do must leave at
least one empty whitespace (tab,blank or newline) character between
statements.

FLWR-Lite tutorial

We are going to explain now the meaning of a FLWR-lite expression (An
Xquery-Lite expression).

FOR statementss

A FOR statement executes an Xpath expression over an XML document
returning a nodeset, then remaining sentences in the expression will be
evaluated once for each node in the nodeset.

Example:

{
 for $a in document("foo1.xml")//name
 return {$a}
}

The above expression will get all the "name" elements from the XML

http://www.w3.org/TR/xpath

document contained in the file "foo1.xml" and for each "name" element the
return expression will be executed returning the "name" element. The result
will be something like:

<name>foo</name><name>John</name>...<name>Peter</name>

As you can see each node will be "binded" to the $a variable ($a is not a PHP
variable, is a query variable) and we may use $a in statements below the for
statement to consult the value of the current node

So we know what a FOR statement does, let's see how many ways do we
have for a fot statement

for $a in
document("foo1.xml")/xpath_expression to
query a document from a file
for $a in xmlmem($xml)/xpath_expression
to query a document from a php string
for $a in $x/xpath_expression
to query a document from a Xquery Lite
variable

So we can execute Xpath expressions on files, strings or a query variable
binded by a previous for or let statement

When two or more fors are used instructions below the "fors" will be
executed for each combination of elements generated by the nodesets
returned by each for

Example:

<result>
{
 for $a in document("foo1.xml")//name
 for $b in document("people.xml")//item
 return <combination>
 {$a}
 {$b}
 </combination>
}
</result>

This will generate something like:

<result>
 <combination>
 <name>foo</name>
 <item>i1</item>
 </combination>

 <combination>
 <name>foo</name>
 <item>i2</item>
 </combination>
 ...
</result>

So two or more for statements produce a "join" of XML documents.

Two or more for statements can be written in a compact syntax using
comma sepparated for expressions:

for $a in document("foo1.xml")//item
for $t in $a/title
for $n in $a/name

Can be written as:

for $a in document("foo1.xml")//item, $t in
$a/title, $n in $a/name

Return statement

A return statement indicates what the Query must return, returns are
executed once for each combination of nodes produced by for statements, a
return statement has the following syntax.

return Xquery-Lite-Query

So what follows a return statement can be text decorations and Xquery
expressions enclosed between brackets, typically text decoration is used to
give some format to the answer and Xquery expressions are used to take
values from query variables and output them.

Example:

{
 for $a in document("foo1.xml")//name
 return <a_name>
 {$a/text()}
 </a_name>
}

Note that the for statements produce name "elements" so if we want to
return the text we use a mini-xpath expression using each "name" element
as the XML source inside the return statement. We may have several Xquery
expressions in a return expression enclosed by brackets and each of them
can be a full FLWR expression so we may have sub-queries using query
variables as XML sources and producing some result.

Where statement

A where statement is used to "filter" results that will be passed to the return
statement, it is the "key" construction for a query since it allows us to return
what we want and not everything. A where statement must return true or
false, for example:

{
 for $a in document("foo1.xml")//person
 where $a/age > 10
 return
 {$a/name/text()}

}

In this example we return all the names of persons with age > 10 note that
an age "element" when compared to a string or an integer is automatically
converted to a string.

In a where expression we may have:

• Parenthesis can be used to override precedence and are
recommended.

• Expressions can be combined by "and" and "or" expressions ex:
where ($a/name="foo") and ($a/age>10)<60

• <,>,<=,>=,=,<> can be used to compare elements against values
or elements agains elements

• If an element with sub-elements is compared to another elements a
recursive-deep match is done, if all the subelements are present and
equal then the elements are considered equal.

• +,-,*,/ can be used to perform arithmetic operations between
elements containing numbers

• The count() function can be used to count the number of node in a
expression ex: where count($a/name)=1 if we want elements with
only one name subelement

So some complex where expressions can be used to perform complex
queries.

Let statements

A let statement can bind a value to a query variable, for example:

let $name := $a/name/text()

This expression binds the result of the $a/name/text() xpath expression to
the query's $name variable.

Let expressions are generally optional and used only as auxiliary variables

that will later be used in a where or return expression

Examples of Xquery-Lite queries

Now we are going to show how some W3C Xquery Use-Cases can be solved
using Xquery Lite

In the examples we will work with the "bib.xml" document which has
information about books:

<bib>
 <book year="1994">
 <title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price> 65.95</price>
 </book>

 <book year="1992">
 <title>Advanced XML Programming in the Unix
environment</title>

<author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>

 <book year="2000">
 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>

<author><last>Suciu</last><first>Dan</first></author>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <price> 39.95</price>
 </book>

 <book year="1999">
 <title>The Economics of Technology and Content for
Digital TV</title>
 <editor>
 <last>Gerbarg</last><first>Darcy</first>
 <affiliation>CITI</affiliation>
 </editor>
 <publisher>Kluwer Academic
Publishers</publisher>
 <price>129.95</price>
 </book>

</bib>

And the reviews.xml document listing book reviews:

<reviews>
 <entry>
 <title>Data on the Web</title>
 <price>34.95</price>
 <review>
 A very good discussion of
semi-structured database
 systems and XML.
 </review>
 </entry>
 <entry>
 <title>Advanced Programming in the
Unix environment</title>
 <price>65.95</price>
 <review>
 A clear and detailed
discussion of UNIX programming.
 </review>
 </entry>
 <entry>
 <title>TCP/IP Illustrated</title>
 <price>65.95</price>
 <review>
 One of the best books on
TCP/IP.
 </review>
 </entry>
</reviews>

Use-Case 1

Query: List books published by Addison-Wesley after 1991, including their
year and title.

Solution:

<bib>
 {
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")/bib/book
 where $b/publisher = "Addison-Wesley" and $b/@year > 1991
 return
 <book year="{ $b/@year }">
 { $b/title }
 </book>
 }
</bib>

Comment: we retrieve all book elements using a for statement and filter by
the name of the published and the year attribute (note the element/@name

notation). The return just builds an XML document listing the year as an
attribute and the title of the books that match the criteria.

The result will be something like this:

<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
</book>
<book year="1992">
<title>Advanced XML Programming in the Unix
environment</title>
</book>
</bib>

Use-Case 2

Query: Create a flat list of all the title-author pairs, with each pair enclosed
in a "result" element.

<results>
 {
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")/bib/book,$t
in $b/title,$a in $b/author
 return
 <result>
 { $t }
 { $a }
 </result>
 }
</results>

Comment: We retrieve all the book elements then for each book we retrieve
all the titles (a book may have several titles) and all the book's authors and
generate a result element with a title sub-element and author sub-element.

Expected result:

<results>
 <result>
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 </result>
 <result>
 <title>Advanced XML Programming in the Unix
environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 </result>
 <result>
 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>
 </result>
 <result>
 <title>Data on the Web</title>

<author><last>Buneman</last><first>Peter</first></author>
 </result>
 <result>
 <title>Data on the Web</title>
 <author><last>Suciu</last><first>Dan</first></author>
 </result>
</results>

Use-Case 3

Query: For each book in the bibliography, list the title and authors, grouped
inside a "result" element.

Solution:

<results>
{
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")/bib/book
 return
 <result>
 { $b/title }
 { $b/author }
 </result>
}
</results>

Comment: In this simple query we just return the title and author for each
book note that since a book may have many authors we may have several
author elements for each result.

Expected result:

<results>
 <result>
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 </result>
 <result>
 <title>Advanced XML Programming in the Unix
environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 </result>
 <result>
 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 </result>
 <result>
 <title>The Economics of Technology and Content for Digital
TV</title>
 </result>
</results>

Use-Case 4

For each author in the bibliography, list the author's name and the titles of
all books by that author, grouped inside a "result" element.

Solution:

<results>
 {
 for $a in distinct-
values(document("c:\apache\htdocs\phpxmlclasses\bib.xml")//author)
 return
 <result>
 {$a }
 {
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")/bib/book
 for $a2 in $b/author
 where $a2=$a
 return {$b/title}
 }
 </result>
 }
</results>

Comment: We retrieve all the authors using a for statement then for each
author we return something so we use a return statement with sub-queries.
First we output the author element and then for each book in bib where the
author is our author we output the title. This way we output all the titles by
this author. Note the distict-values function that can be used a a wrapper of
an expression to filter duplicate elements in a nodeset.

Expected result:

<results>
 <result>
 <author><last>Stevens</last><first>W.</first></author>
 <title>TCP/IP Illustrated</title>

<title>Advanced XML Programming in the Unix

environment</title>
 </result>
 <result>

<author><last>Abiteboul</last><first>Serge</first></author>
 <title>Data on the Web</title>
 </result>
 <result>

<author><last>Buneman</last><first>Peter</first></author>
 <title>Data on the Web</title>
 </result>
 <result>
 <author><last>Suciu</last><first>Dan</first></author>
 <title>Data on the Web</title>
 </result>
</results>

Use-Case 5

For each book found at both bn.com and amazon.com, list the title of the
book and its price from each source.

Solution:

<books-with-prices>
 {
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")//book,
 $a in
document("c:\apache\htdocs\phpxmlclasses\reviews.xml")//entry
 where $b/title = $a/title
 return
 <book-with-prices>
 { $b/title }
 <price-amazon>{ $a/price/text() }</price-amazon>
 <price-bn>{ $b/price/text() }</price-bn>
 </book-with-prices>
 }
</books-with-prices>

Comment: This is avery nice example since two XML documents are "joined".
We retrieve all the books from bib.xml and all the reviews from reviews.xml
and we filter matching the titles (the join condition). Then we just list the
price a book has in one document and the other one. Easy to think, easy to
write and the result is just what we wanted!

Expected result:

<books-with-prices>
 <book-with-prices>

 <title>TCP/IP Illustrated</title>
 <price-amazon>65.95</price-amazon>
 <price-bn> 65.95</price-bn>
 </book-with-prices>
 <book-with-prices>
 <title>Data on the Web</title>
 <price-amazon>34.95</price-amazon>
 <price-bn> 39.95</price-bn>
 </book-with-prices>
</books-with-prices>

Use-Case 6

For each book that has at least one author, list the title and first two
authors, and an empty "et-al" element if the book has additional authors.

Solution:

 {
 for $b in xmlmem($bib)//book
 where count($b/author) > 2
 return

 { $b/title }
 {
 for $a in
$b/author[position()<=2]
 return {$a}
 }

 }

 {
 for $b in xmlmem($bib)//book
 where count($b/author) <= 2
 return

 { $b/title }
 {
 for $a in
$b/author[position()<=2]
 return {$a}
 }

 }

Comment: The Xquery Lite 1.0 language doesn't have an IF statement yet (it
is planned for 1.1) so we have to split the query in two parts one for the
books with more than two authors and another part for the books with 2 or

less authors. Note that the books document has to be parse twice which is
not good. This will be solved when the if statement is ready meanwhile we
cansee that the use-case can be solved anyway.

Expected result:

<bib>
 <book>
 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>
 <et-al />
 </book>
 <book>
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 </book>
 <book>
 <title>Advanced XML Programming in the Unix
environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 </book>
 <book>
 <title>The Economics of Technology and Content for
Digital TV</title>
 </book>
</bib>

Use-Case 9

In the document "bib.xml", find all titles that contain the word "XML",
regardless of the level of nesting.

Solution:

<results>
{
 for $t in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")//title[contains(./text(),"XML")]
 return {$t}
 }
</results>

Comment: A straightforward application of an Xpath query. Note how easy it
is to enhance Xpath queries giving the result an XML format using simple
Xquery Lite queries.

Expected result:

<results>
 <title>Advanced XML Programming in the
Unix environment</title>
</results>

Use-Case 11

For each book with an author, return the book with its title and authors. For
each book with an editor, return a reference with the book title and the
editor's affiliation.

Solution:

<bib>
{
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")//book[author]
 return
 <book>
 { $b/title }
 { $b/author }
 </book>
}
{
 for $b in
document("c:\apache\htdocs\phpxmlclasses\bib.xml")//book[editor]
 return
 <reference>
 { $b/title }
 {$b/editor/affiliation}
 </reference>
}

Comment: This example shows how to combine two Xquery Lite expressions
in a query note the Xpath expression used to check if the book element has
an author or editor subelement.

Expected result:

<bib>
 <book>
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 </book>
 <book>
 <title>Advanced XML Programming in the Unix
environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 </book>

http://phpxmlclasses.sourceforge.net/class_xquery_lite.html
http://research.salutia.com/xquery_lite/demo.php

 <book>
 <title>Data on the Web</title>

<author><last>Abiteboul</last><first>Serge</first></author>

<author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 </book>

 <reference>
 <title>The Economics of Technology and Content for
Digital TV</title>
 <affiliation>CITI</affiliation>
 </reference>
</bib>

Implementations

There's only one implementation of the Xquery Lite language by the
moment:

• PHP: Class Xquery Lite a full Xquery Lite 1.0 implementation for PHP

based on the DOM standard. This implementation has a demo site at
this site

